939 research outputs found

    Worst-case convergence analysis of inexact gradient and Newton methods through semidefinite programming performance estimation

    Get PDF
    We provide new tools for worst-case performance analysis of the gradient (or steepest descent) method of Cauchy for smooth strongly convex functions, and Newton's method for self-concordant functions, including the case of inexact search directions. The analysis uses semidefinite programming performance estimation, as pioneered by Drori and Teboulle [Mathematical Programming, 145(1-2):451-482, 2014], and extends recent performance estimation results for the method of Cauchy by the authors [Optimization Letters, 11(7), 1185-1199, 2017]. To illustrate the applicability of the tools, we demonstrate a novel complexity analysis of short step interior point methods using inexact search directions. As an example in this framework, we sketch how to give a rigorous worst-case complexity analysis of a recent interior point method by Abernethy and Hazan [PMLR, 48:2520-2528, 2016].Comment: 22 pages, 1 figure. Title of earlier version was "Worst-case convergence analysis of gradient and Newton methods through semidefinite programming performance estimation

    On the oracle complexity of smooth strongly convex minimization

    Full text link
    We construct a family of functions suitable for establishing lower bounds on the oracle complexity of first-order minimization of smooth strongly-convex functions. Based on this construction, we derive new lower bounds on the complexity of strongly-convex minimization under various inaccuracy criteria. The new bounds match the known upper bounds up to a constant factor, and when the inaccuracy of a solution is measured by its distance to the solution set, the new lower bound exactly matches the upper bound obtained by the recent Information-Theoretic Exact Method by the same authors, thereby establishing the exact oracle complexity for this class of problems

    Efficient First-order Methods for Convex Minimization: a Constructive Approach

    Full text link
    We describe a novel constructive technique for devising efficient first-order methods for a wide range of large-scale convex minimization settings, including smooth, non-smooth, and strongly convex minimization. The technique builds upon a certain variant of the conjugate gradient method to construct a family of methods such that a) all methods in the family share the same worst-case guarantee as the base conjugate gradient method, and b) the family includes a fixed-step first-order method. We demonstrate the effectiveness of the approach by deriving optimal methods for the smooth and non-smooth cases, including new methods that forego knowledge of the problem parameters at the cost of a one-dimensional line search per iteration, and a universal method for the union of these classes that requires a three-dimensional search per iteration. In the strongly convex case, we show how numerical tools can be used to perform the construction, and show that the resulting method offers an improved worst-case bound compared to Nesterov's celebrated fast gradient method.Comment: Accepted in Mathematical Programming (https://doi.org/10.1007/s10107-019-01410-2). Code available on GitHub (https://github.com/AdrienTaylor/GreedyMethods

    Principled Analyses and Design of First-Order Methods with Inexact Proximal Operators

    Full text link
    Proximal operations are among the most common primitives appearing in both practical and theoretical (or high-level) optimization methods. This basic operation typically consists in solving an intermediary (hopefully simpler) optimization problem. In this work, we survey notions of inaccuracies that can be used when solving those intermediary optimization problems. Then, we show that worst-case guarantees for algorithms relying on such inexact proximal operations can be systematically obtained through a generic procedure based on semidefinite programming. This methodology is primarily based on the approach introduced by Drori and Teboulle (Mathematical Programming, 2014) and on convex interpolation results, and allows producing non-improvable worst-case analyzes. In other words, for a given algorithm, the methodology generates both worst-case certificates (i.e., proofs) and problem instances on which those bounds are achieved. Relying on this methodology, we provide three new methods with conceptually simple proofs: (i) an optimized relatively inexact proximal point method, (ii) an extension of the hybrid proximal extragradient method of Monteiro and Svaiter (SIAM Journal on Optimization, 2013), and (iii) an inexact accelerated forward-backward splitting supporting backtracking line-search, and both (ii) and (iii) supporting possibly strongly convex objectives. Finally, we use the methodology for studying a recent inexact variant of the Douglas-Rachford splitting due to Eckstein and Yao (Mathematical Programming, 2018). We showcase and compare the different variants of the accelerated inexact forward-backward method on a factorization and a total variation problem.Comment: Minor modifications including acknowledgments and references. Code available at https://github.com/mathbarre/InexactProximalOperator

    Provable non-accelerations of the heavy-ball method

    Full text link
    In this work, we show that the heavy-ball (\HB) method provably does not reach an accelerated convergence rate on smooth strongly convex problems. More specifically, we show that for any condition number and any choice of algorithmic parameters, either the worst-case convergence rate of \HB on the class of LL-smooth and ÎŒ\mu-strongly convex \textit{quadratic} functions is not accelerated (that is, slower than 1−O(Îș)1 - \mathcal{O}(\kappa)), or there exists an LL-smooth ÎŒ\mu-strongly convex function and an initialization such that the method does not converge. To the best of our knowledge, this result closes a simple yet open question on one of the most used and iconic first-order optimization technique. Our approach builds on finding functions for which \HB fails to converge and instead cycles over finitely many iterates. We analytically describe all parametrizations of \HB that exhibit this cycling behavior on a particular cycle shape, whose choice is supported by a systematic and constructive approach to the study of cycling behaviors of first-order methods. We show the robustness of our results to perturbations of the cycle, and extend them to class of functions that also satisfy higher-order regularity conditions

    A note on approximate accelerated forward-backward methods with absolute and relative errors, and possibly strongly convex objectives

    Get PDF
    In this short note, we provide a simple version of an accelerated forward-backward method (a.k.a. Nesterov's accelerated proximal gradient method) possibly relying on approximate proximal operators and allowing to exploit strong convexity of the objective function. The method supports both relative and absolute errors, and its behavior is illustrated on a set of standard numerical experiments. Using the same developments, we further provide a version of the accelerated proximal hybrid extragradient method of Monteiro and Svaiter (2013) possibly exploiting strong convexity of the objective function.Comment: Minor modifications in notations and acknowledgments. These methods were originally presented in arXiv:2006.06041v2. Code available at https://github.com/mathbarre/StronglyConvexForwardBackwar

    Acceleration Methods

    Full text link
    This monograph covers some recent advances in a range of acceleration techniques frequently used in convex optimization. We first use quadratic optimization problems to introduce two key families of methods, namely momentum and nested optimization schemes. They coincide in the quadratic case to form the Chebyshev method. We discuss momentum methods in detail, starting with the seminal work of Nesterov and structure convergence proofs using a few master templates, such as that for optimized gradient methods, which provide the key benefit of showing how momentum methods optimize convergence guarantees. We further cover proximal acceleration, at the heart of the Catalyst and Accelerated Hybrid Proximal Extragradient frameworks, using similar algorithmic patterns. Common acceleration techniques rely directly on the knowledge of some of the regularity parameters in the problem at hand. We conclude by discussing restart schemes, a set of simple techniques for reaching nearly optimal convergence rates while adapting to unobserved regularity parameters.Comment: Published in Foundation and Trends in Optimization (see https://www.nowpublishers.com/article/Details/OPT-036
    • 

    corecore